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I. INTRODUCTION

The current main goal of mobile robotics is to make robots
more intelligent, and machine learning probably plays an
import role to achieve this. Since a mobile robot moves in
the environment, the difficulties of mobile robotics differ from
those of stationary robotics: a mobile robot cannot return to
a defined initial state, the proprioception does not return a
global pose and the global pose is generally never exactly
known, esp. visual perception is difficult to control in terms
of lighting conditions or appearance changes, the closed world
assumption does not apply as new and unknown relevant ob-
jects and situations could appear, and computational resources
are somewhat limited due to weight, space and battery life.
These differences are a subset of reasons why it is difficult
to apply state-of-the-art deep reinforcement learning methods
which have been successfully used in stationary robotics like
sim-to-real transfer [22 [15] to visual navigation tasks in
mobile robotics. Nevertheless, there were recent impressive
results like learned visual navigation to an arbitrary target
place presented by Bruce et al. [5]; however, in their work
the agent was trained offline with reinforcement learning on
images of a previously recorded environment — accordingly,
online exploration of the environment is not possible with their
method. These drawbacks of widely used algorithms motivate
us to look for alternative machine learning approaches which
could potentially be used in mobile robotics, and to figure out
their limitations and potentials.

We focus on navigation as a fundamental ability of a mobile
robot, and address the subtask visual place recognition in
our current research. Visual place recognition is the problem
of camera based localization of a robot given a database of
images of known places, potentially under severe appearance
changes (e.g., different weather or illumination) [16]. For
instance, it is used for loop closure detection in order to build
globally consistent maps in a SLAM system (Simultaneous
Localization And Mapping) or to recover the robot’s pose in
case of tracking failure [20]. As places at different locations in
the world can look similar, systems that exploit sequences of
images (e.g., SeqSLAM [18]]) potentially perform better than
a pairwise image comparison [23].

To address the task of sequence-based visual place recog-
nition in our current research, we take inspiration from the
Hierarchical Temporal Memory (HTM) by Jeff Hawkins [10],
a biologically plausible model of sequence processing in
the human neocortex. HTM as a machine learning approach
observes an incoming stream of sensor data and tries to learn to
predict possible next inputs in an intermediate layer [[11]]; these

predictions are based on previous (correct) predictions which
enables the HTM system to encode long-term context even in
case of temporarily similar input data but different context.
In HTM Theory, input data and inner states are represented
as binary SDRs (sparse distributed representations) [1], and
learning is done in a Hebbian fashion. More details on HTM
and current developments can be found in [9].

We took several ideas from HTM to develop our sequence-
based visual place recognition algorithm MCN (MiniColumn
Network) (see Sec. . For performance evaluation, we con-
ducted experiments on synthetic data, real world datasets,
and online on a mobile robot in two challenging indoor
environments (see Sec. [[V). Building upon our current MCN-
algorithm, we pursue ideas inspired by neurological insights
to develop our system further for performance improvements
(Sec. [V), and to apply it to a broader area of visual navigation
beyond place recognition.

II. RELATED WORK

Place Recognition is a well studied problem. Lowry et al.
[[16] provide a recent survey. For place recognition in chang-
ing environments, descriptors from intermediate convolutional
layers (e.g., conv3) from off-the-shelve CNNs like Alexnet
[[14] showed good results [23]; more recently, CNN descriptors
were particularly designed and trained for place recognition,
e.g. NetVLAD [2]]. Based on such descriptors, a variety of
approaches exists to compare and match images. Beyond
simple pairwise comparison and using statistics of feature
appearances (e.g., FAB-MAP [6])), the benefit of exploiting se-
quence information is well accepted: SeqSLAM [18]] searches
for linear segments of high similarity in the pairwise similarity
matrix. Hansen and Browning [8] model sequence based
place recognition as Hidden Markov Model. Arroyo et al.
[3] use concatenated binary features to represent sequences.
Vysotska et al. present a series of approaches to efficient place
recognition using a graph theoretical approach [24} 25| [26].
RatSLAM [19] is an approach to SLAM that is biologically
inspired by entorhinal grid cells [7]] in the rats brain.

ITI. APPROACH

An early version of MCN is presented in [21] which we
extended in our recent work for its application to real world
data. A simple MCN is depicted in Fig. [T} right: It basically
consists of a spatial pooler and a temporal memory which
are inspired by HTM; the spatial pooler represents a feed-
forward connection in the network from the input sensor data
whereas the temporal pooler contains lateral connections to
make predictions and to maintain an inner state representing
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Fig. 1. (left) Overall approach. (right) Illustration of a minicolumn network

(MCN). Red cells are current winner cells, grey cells are active (but not
winner), blue cells are winner cells from the previous timestep.

the context of the input sequence. Like in HTM, the temporal
memory is organized in minicolumns each containing multiple
cells with directed connections between several cells of dif-
ferent minicolumns. Every minicolumn is sparsely connected
over the spatial pooler with approx. 2% different elements
of the current binary input SDR: If the number of connected
1s to a minicolumn exceeds a threshold t, this minicolumn
is activated in case this activation belongs to the k4, most
active minicolumns.

Every cell can have four different states: inactive, predicted,
active, and winner. An inactive cell becomes predicted if at
least one of its connected predecessor cells becomes active. A
predicted cell becomes active if the corresponding minicolumn
is activated by the spatial pooler in the next timestep; in
this case all active cells become winner cells within this
minicolumn. In conclusion, predicted cells in a minicolumn
try to predict a potential activation of their minicolumn in the
next timestep, so they try to predict a potential next input
SDR to the MCN; if the minicolumn does not become active,
the corresponding cells simply get inactive. However, if an
activated minicolumn has no predicted cells, the minicolumn is
bursted: all cells become active and one winner cell is chosen.

Learning in MCN is different to HTM and happens as
one-shot learning as follows: Each winner cell is always
additionally connected to all winner cells of the previous
timestep. If the number of active minicolumns k,.; is smaller
than K.in, Kmin — Kact minicolumns are newly created with
random connections to s in the current SDR (to get active in
case of the same or similar input).

The data processing pipeline for place recognition is shown
in Fig. [T} left: As front-end, an image descriptor of the current
image is created with Alexnet or NetVLAD followed by a
sparse locality sensitive binary hashing (SLSBH) that creates
a high dimensional vector with 25% 1s. MCN serves as back-
end to process the input stream sequentially.

Finally, all winner cells of a timestep represent the new
descriptor of the current place, and are stored and compared to
the sets of winner cells of every previous timestep to measure
the similarity between the current and all previous places.

IV. EXPERIMENTS
We performed experiments with MCN on synthetic data,
real-world datasets, and online on a mobile robot: As MCN
has a couple of parameters, we evaluated the place recognition
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Online experiment. Thick curves are 21-frame sliding averages of

performance (maxF-score) as a function of each parameter. We
found that higher values are always better regarding maxF-
score (potentially with the cost of higher computation effort),
except for the activation threshold t which has to be set more
carefully.

Furthermore, we tested MCN with the two different front-
ends Alexnet and NetVLAD on five different real-world
datasets (with 22 different sequence-combinations) like Ox-
ford RobotCar or CMU dataset each with differ-
ent challenging properties like multiple loop closures within
one sequence, zero-speed, and appearance changes due to
weather, season, daytime or dynamic objects. We compared
our results to six different sequence processing back-ends
18l 3l [26] [8]]. Considering average precision, MCN
performs best on more sequences than any other algorithm;
furthermore, it is the only algorithm which never performs
much worse than the pairwise image comparison baseline —
accordingly, MCN always maintains or improves its front-
end’s performance. NetVLAD as front-end performs better
than Alexnet.

Finally, as a proof-of-concept we ran MCN online on a
mobile robot equipped with a camera to detect loop closures.
The robot drove multiple loops in two different indoor envi-
ronments both with a modern, clean architecture. Fig. |Z| shows
the result of a 730m long ride through the foyer of a lecture
hall building with passing students. The system achieved 858
true and 33 false loop closures. Note that the robot performed
visual place recognition but not visual localization; metric
information is used only for visualization of ground truth. The
plot on the right shows that the number of minicolumns grows
much slower in case of revisits. We also achieved good results
for the second environment.

V. DISCUSSION & FUTURE WORK

We could achieve first good results with MCN on many
different experiments. However, the system requires more
theoretical analysis as well as further investigation of the
prediction quality and length within the temporal memory.
Furthermore, we want to involve more concepts from the
original HTM like permanences and segments. To extend
MCN’s capabilities and to perform more sophisticated nav-
igation tasks, we are going to extend the system with other
cell types like grid cells or head-direction cells [[7] as proposed
in [12, [13], or to figure out how multimodal data like camera
and LiDAR can be used. A distant goal might be the output
of actions, but this requires further extensive research.
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